P3 Tutorial4 pt.3

Part 2 looked at setting up timers to allow us to better control the animation of
sprite.

The 2D code provided called “RollingWheel” and “Looper” also help to
demonstrate many of the points covered in this tutorial.

The Need for Time
When designing a game title, the recurring concern is game performance - will
the game play fast enough?

An equally important question is whether the game will play smoothly. No
matter how optimized your engine may be, it will never be able to provide a
full sense of realism if object motion is not fluid, or if the frame rate is not
consistent.

To achieve this, it is important that we are able to achieve an accurate
measure of time. There are a number of reasons that your software will need
to use timekeeping functions, including:

e To control the rate of motion of objects, such that their motion per
frame is consistent with variations in the time between frames.

e To throttle the frame rate according to the refresh rate of the monitor.

e For management of system resource allocation, such as performing
low priority tasks at a regular interval.

e For timing game events.

Timer Methods

We have at our disposal many timer methods, we have the very basic option
of loops, we have the in built timer method for Win32 SetTimer (see
programming 2) and we have those provided by the microsoft utility files and
we have 3 timer functions: timeGetTime, GetTickCount and Performance
Counter.

Performance counter is generally the one to use as it is offers the best
accuracy and resolution.

We are now going to use performance counter as an addition to our code for
P3_Tutorial4pt.2. This will enable us to control the number of frames per
second through dynamic calculation.

Performance Counter

We need to specify our header files, global variables and function prototypes.

/117777777777 7777777/777/777/777/7/7//77/7/7/77/7/7/7777777
// Performance Counter App

L1117 777777/777/777/777/777/777/777//7/7//77/77/7//777/777
#include <windows.h>

#include <d3d9.h>

#include <d3dx9.h>
#include <dxerr9.h> // included for errors

// Function prototypes.

LRESULT WINAPI WndProc(HWND hWnd, UINT msg,
WPARAM wParam, LPARAM IParam);

void RegisterWindowClass(HINSTANCE hlnstance);

void CreateAppWindow(HINSTANCE hlnstance);

WPARAM StartMessagelLoop();

HRESULT InitFullScreenDirect3D();

void Render();

void CleanUpDirect3D();

BOOL IsTimeForNextFrame();

bool SelectTimer();

// Global variables.

HWND g _hWnd;

IDirect3D9* g_pDirect3D = NULL;
IDirect3DDevice9* g _pDirect3DDevice = NULL;
ID3DXSprite* g_pBitmapSprites = NULL;

// Declare Array of 8 textures to hold bitmaps
IDirect3DTexture9* g_pTexture[8];

// Declare Array of 8 surfaces to hold bitmaps
//1Direct3DSurface9* g_pBitmapSurfaces[8];

HRESULT g_hResult = D3D_OK;

char g_szErrorMsg[256];

// global flag for timer type to use
bool g _bTimerType = false;

// performance timer frequency
LONGLONG g_lIPerfCnt;

// ** globals for sprites - passed as params in the Draw() method
// ** they determine such things as how, where the sprite is drawn
// global vectors - vectors are necessary for sprite class

D3DXVECTOR2 g_vCentre(64.0F, 64.01F);
// Sprite translation - set in middle of screen
D3DXVECTOR2 g_vTranslation(100.0Ff, 50.0F);

// normally we would need a vector for scaling but by setting
// the relevant Draw() method param to NULL scaling is (1.0,1.0)
// i.e. no scaling is used and the source image size is preserved

// D3DXVECTOR2 g_vScaling;
// global float of the angle of rotation in radians
float g_TRotation = 0;

Next is our WinMain() function, where everything originates from. This has
been stripped down with code we normally see added to functions that are
called from WinMain().

WinMain() is therefore only acting to initialise some of our variables and to call
other functions.

/111777777777 777777777/777/777/777/777/77//77/7/77/7/7777
// WinMain()
L1177 77777777777777/777/777/777/77/7//7/7//7/7/77/7/7/777/777
INT WINAPI WinMain(HINSTANCE hlnstance, HINSTANCE, LPSTR, INT)
{
// initialise our array of textures to NULL
for (int x=0; Xx<8; ++Xx)

g_pTexture[x] = NULL;

RegisterWindowClass(hlnstance);
CreateAppWindow(hlnstance);
ShowWindow(g_hwWnd, SW_SHOWDEFAULT) ;
UpdateWindow(g_hWnd) ;
// set the global flag for the timer we are using
g _bTimerType = SelectTimer();

HRESULT hResult = InitFullScreenDirect3D();

iT (SUCCEEDED(hResult))
WPARAM result = StartMessagelLoop();

CleanUpDirect3D();
CloseWindow(g_hWnd);

it (g_hResult !'= D3D_0OK)
DXTRACE_ERR(g_szErrorMsg, g_hResult);

return O;

Next we add a function to handle any windows messages, as this is platform
we are operating one it is required - WndProc()

The next code to add is the code to register our window, this function is called
from WinMain() and registers our window with the Windows operating system
- RegisterWindowClass()

This function is again called by WinMain() and this creates our window -
CreateAppWindow()

The next code to add is the message handler - StartMessagelLoop()

These functions have not changed; therefore the code is not included!

The next function coded is InitDirect3D to initialise the elements of our
program. It checks for errors and returns relevant error code.

L117/77777777777/777/777/777/777/777//7/7//7/7/77/7//77/777
// InitFullScreenDirect3D()
/1177777777777 77777777777777/777777//77/7/7/7//77/7/77777
HRESULT InitFullScreenDirect3D()
{

g_pDirect3D = Direct3DCreate9(D3D_SDK VERSION);

if (g _pDirect3D == NULL)

MessageBox(g_hwnd,
"Couldn’t create DirectX object.",
"DirectX Error', MB_0K);

return E_FAIL;

}

HRESULT hResult = g_pDirect3D-
>CheckDeviceType(D3DADAPTER DEFAULT,
D3DDEVTYPE_HAL, D3DFMT_X8R8G8BS, D3DFMT_X8R8G8B8, FALSE);

if (hResult != D3D_OK)

{
MessageBox(g_hwnd,
"Sorry. This program won”t\nrun on your system.',
"DirectX Error', MB_0K);
return E_FAIL;
}

D3DPRESENT_ PARAMETERS D3DPresentParams;
ZeroMemory(&D3DPresentParams, sizeof(D3DPRESENT PARAMETERS));
D3DPresentParams.Windowed = FALSE;
D3DPresentParams.BackBufferCount = 1;
D3DPresentParams.BackBufferWidth = 800;
D3DPresentParams.BackBufferHeight = 600;
D3DPresentParams.BackBufferFormat = D3DFMT_X8R8G8B8;
D3DPresentParams.SwapEffect = D3DSWAPEFFECT DISCARD;
D3DPresentParams._hDeviceWindow = g_hWnd;

hResult = g_pDirect3D->CreateDevice(D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL, g_hWnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&D3DPresentParams, &g_pDirect3DDevice);

if (FAILED(hResult))

{
MessageBox(g_hwnd,
"Failed to create Direct3D device.",
"DirectX Error'™, MB_OK);
return E_FAIL;
}

// Get a pointer to the Sprite interface
hResult = D3DXCreateSprite(g_pDirect3DDevice,
&g_pBitmapSprites);
it (FAILED(hResult))

{
MessageBox(g_hWnd, '"'Cannot create sprite interface",
"DirectX Error'™, MB_OK);
return E_FAIL;
}

/* This loop loads the surfaces with images, which are the
8 animation frames. */
for (int x=0; x<8; ++x)
{ // this section of code loads the surfaces with a bitmaps frame
char filename[15]; // where we are going to store our
filename
// dyanamically create our filename
wsprintf(filename, "%s%d%s'™, "FrameQ", x+1, "_.bmp'™);

g_hResult =
D3DXCreateTextureFromFileEx(g_pDirect3DDevice, Ffilename,
D3DX_DEFAULT, D3DX_DEFAULT, 1, O, D3DFMT_AB8R8G8BS,
D3DPOOL_MANAGED, D3DX DEFAULT, D3DX_DEFAULT,
OxFFO00000, NULL, NULL, &g_pTexture[x]);

it (FAILED(g_hResult))

strcpy(g_szErrorMsg, "Couldn’t load bitmap file.™);
PostQuitMessage(WM_QUIT);
break;

}

g_pDirect3DDevice->Clear(0, NULL, D3DCLEAR_TARGET,
D3DCOLOR_XRGB(0,0,0), 1.0Ff, 0);

return D3D_OK;

This function cleans up any pointers and memory used by DirectX and is
called before the program closes

L1111777777777777777/77/77777///7/7777////7/777/7////7777/
// CleanUpDirect3D()

L1177 7777777777777777777//77777////777/7////7/77/7/7///777
void CleanUpDirect3D()

{
for (int x=0; Xx<8; ++Xx)
{
it (g_pTexture[8])
g_pTexture[8]->Release();
}
it (g_pBitmapSprites)
g_pBitmapSprites->Release();
ifT (g_pDirect3DDevice)
g_pDirect3DDevice->Release();
it (g_pDirect3D)
g_pDirect3D->Release();
}

Render is the other function that is to under go a large change. As render is
performing the drawing it now needs to load the textures into the sprites,
present them to the scene and then display.

/1177777777777 7777777777777/7777777//77//77/777/7/77777
// Render()
/111777777777 777777777/777/777/777/777/77/7/77/7/777/7777
void Render()
{ // call the timer function - when it returns
// true it is time to display our next frame
it (IsTimeForNextFrame())
{ // update our frame counter
static frameNum = O;
frameNum = frameNum + 1;
it (frameNum == 8)
frameNum = O;

g_pDirect3DDevice->Clear(0, NULL, D3DCLEAR_TARGET,
D3DCOLOR_XRGB(0,0,0), 1.0F, 0);

// Begin rendering the scene - more efficient than using

// backbuffer surfaces, has the same effect with the added bonus

// that drawing done after BeginScene and before EndScene
// is draw to that seen - present then presents the new scene
iT(SUCCEEDED(g_pDirect3DDevice->BeginScene()))

// Draw function has changed radically with summer update

// only takes 5 params now - see msdn for definition

g_hResult = g _pBitmapSprites ->
Draw(g_pTexture[frameNum], NULL, NULL, &g vCentre,
g_TfRotation, &g _vTranslation, OxXFFFFFFFF);

if (FAILED(g_hResult))

strcpy(g_szErrorMsg, "Error copying image
buffer.");

PostQuitMessage(WM_QUIT);

return;

// End the scene
g_pDirect3DDevice->EndScene();

// present the new scene to the screen
g_pDirect3DDevice->Present(NULL, NULL, NULL, NULL);

The next function is a timer functions that just uses either timeGetTime or
PerformanceCounter, depending on what the users system supports. It is
called from the render function so it knows when to update and display the
next frame:

L1111 1777777777777777777777/7//////////////////777777/7
// 1sTimeForNextFrame()
///777777777777777777777777777777/77/777/777777777/7777777
BOOL IsTimeForNextFrame()

{

static LONGLONG cur_time; // current time

// ms per frame, default if no performance counter

static LONGLONG time_count = 100;

// flag determining which timer to use

static bool perf _flag = NULL;

static LONGLONG next time = 0; // time to render next frame

if(perf_flag == NULL)
{
iT(g_bTimerType)
{
// yes, set time_count and timer choice flag
perf_flag = true;
// calculate time per frame based on frequency
// 4 limits the frame per second
time_count = g_lIPerfCnt/4;
QueryPerformanceCounter ((LARGE_INTEGER *)

&next_time);

else

{
perf_flag = false;
// no performance counter, read in using timeGetTime

next _time = timeGetTime();

}

iT (Iperf_flag && 'g _bTimerType)
cur_time = timeGetTime();
else
QueryPerformanceCounter ((LARGE_INTEGER *) &cur_time);

// is it time to render the frame?

if (cur_time > next_time)

{ // set time for next frame
next_time += time_count;
return true;

else

return false;

SelectTimer() is called from WinMain() during the initialisation. It is there to
select what timer to use depending on what the users system supports. This
influences how IsTimeForNextFrame() works

L11171777777777777777/7777777////7777////777/7/7////7777/
// SelectTimer()
L117777777777777777777777777777///7/7777//7///777/7/7/77777
bool SelectTimer()

{

// this selects performance counter if users system supports
// it and uses timeGetTime if is doesn®"t. To use timeGetTime
// we need to associate the winmm.lib with our project
iT (QueryPerformanceFrequency((LARGE_INTEGER *) &g_IPerfCnt))
return true;
else
return false;

Exercises

1) Modify the code so that the animation runs at one frame per second
2) Modify the code so that the animation runs at eight frames per second

Work to do
Make a timer class that contains all the necessary functionality to create
instances of the class so that we can initialise timers for multiple objects.
The class should be declared in a header and methods then defined in a
source file.

