Installing the DirectX SDK

Compilers
There are 2 major choices that I'm aware of:

- Microsoft Visual Studio (C++/C#/whatever)

- Dev C++

Borland is another choice; there is a website that will help you get the SDK setup for
this compiler (http://www.geocities.com/foetsch/bcbfag/bcbddraw.htm).

In our lectures we will be using Microsoft Visual Studio .NET 2003, it uses the same
C++ libraries as VSC++ 7.0

I've never used Dev C++, but you can get it here (http://www.bloodshed.net/).
It's free, which is nice. | haven't used it myself so I don't have an opinion on it.

Microsoft Visual C++ is the path of least resistance. DirectX 9 only supports version
6 or greater.

DirectX SDK

The Software Development Kit for DirectX is really big. You do need it though, so if
you're not on a high-speed connection you may want to use a download manager and
leave it running over night.

You can download this direct from Microsoft:
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/directx.asp

Compiler Install

This is the first step you should do. Depending on which product and which version
you're installing, it can be quite different. But it should be pretty straight forward
regardless.

SDK Install

Again, this is pretty simple too. | want to emphasize that when you install it you will
be asked if you want to install the Retail or Debug version. Choose the Debug
version. The value of using the Debug libraries cannot be emphasized enough. Also,
make a note of where you install the SDK; you'll need the path information soon.

DirectX 9.0 SDK is a bit temperamental and may waste some of your time, if you let
it. The following tips should help you avoid wasting time.

If you haven't already done so, update your Windows system with the latest patches
from Microsoft. Next, download the latest release of the .NET Framework SDK,
install it, and check for updates with Windows Update and manually, in MSDN's
.NET Framework section. Now you can download your choice of the DirectX 9.0
SDK versions (full, C#, or VB.NET) and double-click on it to unpack the installation
files to a temporary directory.

http://www.geocities.com/foetsch/bcbfaq/bcbddraw.htm
http://www.bloodshed.net/
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/directx.asp

When you run setup, it will ask you for a path to install the SDK. There is a bug in the
installer that, in some cases, does not accept the path you choose when you click on
the Browse button. If the problem persists and you cannot force the installer to obey
you, the solution to this problem is to quit the setup, remove temporary files, unpack
the archive again, and then, when the installer asks for the path, change C:\DXSDK to
a different path (e.g., E:\DXSDK) manually, by typing it into the Path text field.

Another strange thing that you might run into is a problem with DLL locations. The
DirectX DLLs are put into the C:\WINDOWS\assembly\ directory, where they are
essentially inaccessible to your development environment, be it Visual C# or Visual
Basic .NET. If you open up a windows browser and go to the
C:\WINDOWS\assembly\ directory you should see the followin components:
Microsoft.DirectX

Microsoft.DirectX.AudioVideoPlayback

Microsoft.DirectX.Diagnostics

Microsoft.DirectX.Direct3D

Microsoft.DirectX.Direct3DX

Microsoft.DirectX.DirectDraw

Microsoft.DirectX.Directlnput

Microsoft.DirectX.DirectPlay

Microsoft.DirectX.DirectSound

It doesn't always happen, but if you open a sample project from the DirectX 9.0 SDK
and you see exclamation marks in the References list next to Microsoft.DirectX
libraries, then that's the sign of this particular installer misbehaviour. Fortunately, it is
very easy to fix this problem. Simply open the command line (console) window and

type:

cd c:\windows\assembly\
dir

and you should see this:

Microsoft.DirectX
Microsoft.DirectX.AudioVideoPlayback
Microsoft.DirectX.Diagnostics
Microsoft.DirectX.Direct3D
Microsoft.DirectX.Direct3DX
Microsoft.DirectX.DirectDraw
Microsoft.DirectX.Directinput
Microsoft.DirectX.DirectPlay
Microsoft.DirectX.DirectSound

The DLLs we are looking for are located in subdirectories with long names like:

Microsoft.DirectX.Direct3D\1.0.900.31bf3856ad364e35\
Microsoft.DirectX.Direct3D.dll

Create a normal folder in your chosen location and copy each DLL to it. Then, update
the References in your project and Build a sample application. Everything should
work fine now.

Note: It may store the .DLL components in the C:\WINDOWS\assembly\GAC folder
instead of the base assembly folder.

Note: If you downloaded the DirectX 9.0 Redistributable, do not install it, but keep it
on CD-R until you have your application ready for distribution. It contains files that
Microsoft lets developers distribute to end users, and is of not much use to
programmers. It's the same story with the NET Framework Redistributable.

What You Need To Do

Configuring the compiler is really easy. The hardest part is figuring what you need to
do and where to do it. The following sections will show step-by-step what you have to
tweak and where it is.

VSC++ 6.0:

Tools
Fire up VC6 and select Options from the Tools menu:

Buld Tool: MWindow Help
Sousce Browzer.. AlsF12 I

af men Wizual Component Manage
#l [e Regster Control y
I_ [~ Emoe Lockup »
Atiar Cortiod Test Cordsing
OLE/COM Obgact Yiewer
Sy

MFC Tracer

LCurstoenze,
| Qptors_________________}
Macra..,

Becoid Duck Mecio
Pl Quick Macio ChkShit+P

SWETISRE SAnnanfrrIT R CHUEeeT Tal

Directories
Select the Directories tab. Make sure Show directories for is set to "Include files".

Oplions

Edwor | Tabs | Debug | Compaiibiiy | Buld | Dirsctoies |]3]

EE

Platfam Show directories for,
winzz T =l
Divectones: |+

DASDEMAS I nchade

D:APROUECT SNNCLUGE

CAFogram Files'Microsoll Vissal 5hudn\WCEINCLLIDE
CoPacgram FileshMicrosolt Yisl 5 tudia\WCSB\MFCWMOLLIDE
CAPucsgrann Files\Microsofl Visual Studio\WEIBAATLMHCLUDE
DASDEVMODAWAPIING

CASDENSDLANCLLIDE

DASDEVSTLRORT -4 5 3 STLFORT

=

[ok | camcs |

Select the New button and then navigate to the Include directory in your SDK install.
I installed the SDK at D:\SDK\DX9 so my Include directory is D:\SDK\DX9\Include.

Once you've done that, use the Up arrow button to move that entry to the top of the
list. When VC++ looks for a header it starts at the top and moves down through the
list until the header is found. Putting the SDK directory at the top means it will find
the latest headers rather than the ancient ones included with VC++ 6.

Now change Show directories for to "Library files". Add the path to the "Lib"
directory in your SDK install and move it up to the top.

That's it! Your compiler is now configured and ready to go.

The process for Microsoft Visual Studio .NET 2003 is similar; I’ll show you how

here:
VS .NET 2003:

Tools
Again fire up the IDE

Visual C++ [design] - helloworld.cpp

Buld Debug | Tools | Window Help
cli'E Kl _=3|;, Debug Processes,,, Crrl4+alk+P - #Ar
= onnect to Device. ..
= 2 4 "85 ConnecttoDeyi
tehcpp REIEHR "%, Connect to Database. .. I
Add/Remove Toolboy Tkems., ..
: Mewber Fu Add-in Manager. .. |
Build Comment ‘Web Pages...
1wdl << "Exe ction P
Macros k -
rx iz an & Ackiver Contraol Test Conkainer miber £l
S e e end Create GLID
funchrr[10
Dotfuscator Community Edition
the functi Error Lookup DoMore!
i3 THyClass 4
o ATL/MFC Trace Tool
= £THyCla
= gTHyCla OLESCOM Obiject Wiewer
isignments Spy++
) External Toals. ..
7 a functio the me:
in instance Cuskomize. .. all the
instance; Options. ..
instance. * == endl;
instance., *funchArr[0]) (12, 'a', 'b'] << endl;

Directories

Select the Directories tab. Make sure Show directories for is set to "Include files".

Now it gets a little more complicated than last time as you have to select the relevant
file from the list on the left hand side, other than that it is almost identical.

ezs - 'Dolt' and

'DoMore' are suitable member functions

e/ [Z3 Enwvironment
(23 Source Conkral
[Z3 Texk Editar
[Database Toaols
[23 Debugging
[Device Toals
[HTML Designer
=3 Projects
WEB Defaults
W4+ Build
g WiC++ Directories
Web Settings
(23 Windows Forms Designer
[#ML Designer

n iy
as=s

113
P i1g

Platform:

Show directories for:

|win3z -

|Executable files ﬂ
Executable files

Reference files

0w CInstallDiribin
$(vsInstallDir)Common?, Tools\binprerele
$(vsInstallDir)Common 7 Toolsibin
$(vsInstallDir)Common?tools
$0vSInstalDir)Common7ide
C:\Program Files\HTML Help Workshop!,
${Framewark 30k Dir bin
F(FramewarkDir 4 (Framewarkiersion)
F:\Perlibint

COMINDOW S syskem32

OLAITRIN L ANS

£

Library Files
Source files

Executable Directories
Path to use when searching For executable files while building a W2++ project,
Corresponds ko environment wariable PATH,

]

ntey

Cancel Help

Setting up Debug

The debug version of DirectX (you did install the Debug version, right?) is an
invaluable tool. Often finding the cause of a bug is as easy as viewing the Debug
output generated by the Debug libraries. Both errors and warnings are output and
paying close attention to them will help you make a solid, well performing
application.

The output of the debug libraries is sent to the same place as anything passed to the
OutputDebugString Win32 function. If you use Microsoft Visual C++, there is a
debug window as part of the IDE. When you run an app from within the IDE, the
debug window is shown at the bottom of the IDE window. If you do not have
MSVC++ or want/need to run your app outside of the IDE, then you can download
DebugView from Syslinternals. It's completely free and very handy to have around.
Debug View: http://www.sysinternals.com/ntw2k/freeware/debugview.shtml

The Control Panel

If you've installed the Debug version of DirectX then it will have added an icon to
your control panel. Run the application and you will see a window with 1 tab for each
major component of DirectX. On these tabs are various controls that will assist you in
debugging your DirectX applications.

Select the Direct3D tab. There are a number of things presented here, but we're
mostly interested in 2 of them: Debug Output Level and Debug/Retail D3D Runtime.

Debug Output Level, as you would probably guess, regulates how verbose the
messages it sends are. Set it to the lowest level and very few messages will be sent.

http://www.sysinternals.com/ntw2k/freeware/debugview.shtml

Set it to the highest level and you will be swimming in output (hence the term "Debug
Spew", which is often used to refer to this debug output). Setting it somewhere in the
middle is a good default.

Debug/Retail D3D Runtime chooses whether applications will use the Retail or
Debug libraries when they run. This allows you to switch to the more optimized
Retail libraries for profiling or gaming, while being able to quickly switch back to
Debug for development.

Direct? Properties
Directkd uzic] DirectPlay] DirectSound] DhirectS how]
Direct Direct30 l DirectDraw] Direct nput]
Debug Output Level Debug/Retal D30 Buntime
b= e [+ |lze Debug Yersion of DirectaD
0 0 0 T [Usze Betail Yersion of Direct3D

Mote: Only affects interfaces for
Direck 8 and later.

Managed DirectX

If you are using Managed DirectX there is one thing you need to do in addition to the
steps listed above. Go to the project settings and under Debugging, set Enable
Unmanaged Debugging to true. Without this the Debug output will not be visible.

D3DX

All of this works well for the standard DirectX DLLSs since they're dynamically
linked, but what about D3DX? In the Lib directory of the SDK you will see 3
different versions of the D3DX9 library. There is a retail library, a debug library, and
a debug library that actually uses a DLL. I've never really understood the point of that
last one, so we'll focus on the first two.

When you link with the debug version of D3DX, you get the same benefits of debug
output as with the standard DirectX libraries. Typically you'll want to link with the
debug library in your debug builds, and the retail library in your retail builds. Since |
use the #pragma comment mechanism to link libraries, all it takes is a little #ifdef
magic and you're done. Here's the code snippet:

#ifdef DEBUG

#pragma comment(lib,"d3dx9d.lib™)
#else

#pragma comment(lib,"d3dx9.lib™)
#endif

