
Programming 1: Tutorial 5

Introduction
For this tutorial you are going to be advancing the concept of controlling the flow
of the program, this time using loops to repeats blocks of code.
You can either over write previous question solutions with new ones or you can
have a project for each of the exercises – don’t forget to make them blank
applications.

Hopefully you remember the basic layout of a C++ program?
If not here is a refresher, basic C++ programs like the ones you have been asked
to do here have the following layout:

#include <iostream>
// include statements up here

int main()
{
 // block of code between the { and } brackets

 return 0;
}

It may also help if you go through a design stage for each exercise where you
plan and puzzle through the logic before actually coding.

To complete these exercises you may need to reference the notes, either online
or use the printed ones provided. Doing this isn’t a bad thing; most programmers
have to look up the syntax to make sure there code is correct.

There is sample code at the end of the tutorials, typing and running this code
may help you when it comes to solving the exercises.

It is also important to understand what is happening with the questions, rather
than just typing it into the compiler. If you look at it, run it and don’t understand
then just ask.

Errors
Again after the actual tutorial is a look at another type of error and what results it
can cause.

 1

While/do-while Loop Questions

1) When does the code block following while(x<100) execute?
A. When x is less than one hundred
B. When x is greater than one hundred
C. When x is equal to one hundred
D. While it wishes

2) How many times is a do while loop guaranteed to loop?
A. 0
B. Infinitely
C. 1
D. Variable

for Loop Questions

1) What value would sum have when this loop is exited?

int sum = 0;
for (int i = 20; i > 10; i--)
{

sum = sum + i;
}

2) What does the following for loop actually do? When does it exit? Why?

for (int i = -5; i > 0; i++)
{

cout << i;
}

3) What does the following for loop actually do? When does it exit? Why?

int sum = 0;
for (int i = -5; i; i++)
{

sum = sum + i;
}

4) What is output by the following for loop? When does it exit?

 2

int sum = 1;
int exit_loop = 1;

for (int i = 0; exit_loop; sum = sum + i)
{

if (sum > 100)
{

exit_loop = 0;
}
cout << sum << endl;
i++;

}

Beginning while and do-while Loop Exercises

Summing Loop
Write a program using a while loop to find the sum of the integers 0 through 100
inclusive. Display the resulting sum.

User Event-controlled
Write a while loop that will only enable the user to exit if the press ‘q’

Beginning for Loop Exercises

ASCII Characters
Write a program that prints out the all of the ASCII character types.

Hints:
You will need to use a for loop for this
The ASCII character types are from 0 to 255
You will need to use explicit type casting

Seeing Stars
Write a program that will request one number between 1 and 9 from the user and
will print the following pattern of stars (user input determines the number of rows
and the number of stars in the first row).

* * * * *
* * * *
* * *
* *
*

 3

Advanced while or do-while Loop Exercises

Circle Calculator
Implement a program that asks the user for a valid circle diameter as an input:
Valid is in the range 1.75 - 13.25. If they enter a negative number quit, else
repeat the loop asking for a valid input.
If they enter a correct number display the following:
Your Circle:
Diameter = <display number>
Radius = <display number>
Area = <display number>
Circumference = <display number>

Use a do-while loop to trap them until they exit or input a correct number

Circle equations are:
radius = diameter / 2;
area = (pi*radius)*radius;
circumference = pi * diameter;

 4

Runtime (Execution) Errors

To start of with this week we are going to look at the third type of error – Runtime
Errors

Runtime (Execution) Error

• Error occurs while the program is running, causing the program to ‘crash’
(Terminate abnormally). This usually produces an error message from the
operating system

• Error is frequently an illegal operation of some sort, examples are:
o Access violations – trying to use a resource that hasn’t been

allocated
o Arithmetic errors – Divide by 0

• Program source code compiles and links without errors – detected when
the program is run

• Some operating systems do not reliably detect and respond to some
execution errors

The Most Common Runtime (Execution) Error

Is likely to result from using un-initialised variables

Try the following code out:

#include <iostream>

using namespace std;

int main ()
{
 int number; // declared not initialised

 cout << number; // print out the un-initialised

 return 0;
}

This is an example of a common run-time error and report.

 5

	While/do-while Loop Questions
	1) When does the code block following while(x<100) execute?
	A. When x is less than one hundred
	B. When x is greater than one hundred
	C. When x is equal to one hundred
	D. While it wishes
	2) How many times is a do while loop guaranteed to loop?
	A. 0
	B. Infinitely
	C. 1
	D. Variable
	for Loop Questions
	Beginning while and do-while Loop Exercises
	Summing Loop
	Write a program using a while loop to find the sum of the in
	Beginning for Loop Exercises
	Advanced while or do-while Loop Exercises

