
Lecture 2 Programming for Artists and Designers

Programming for Artists and Designers

Lecture 2: Introduction to Classes and Packages

Introduction
This lecture aims to introduce you to the basics of classes and packages used
in unreal, and how they interact.

Links
This lecture owes its content to: http://wiki.beyondunreal.com/wiki/Package

Classes vs. Packages
It is important to note the differences between classes and packages.

Sometimes when referencing a class, the name of the file is used, and
sometimes, it isn't, obscuring the issue.
A class representation, especially when called from another class, such as
"Pawn.PlayerReplicationInfo" looks exactly like a variable reference, such as
"PlayerReplicationInfo.PlayerName".

In addition, classes have an entirely different hierarchy than the files, and it's
for the most part, completely unrelated. We find player pawn classes and
mutators in all sorts of packages.

Hey, while we're at it, what exactly is a class file anyway, and where do I find
it? Add that all together, and you have a potentially very confusing situation.

What Are Packages?
Many times you will see references to something called a package. Well, what
exactly IS a package?
A package refers to ANY of the Unreal file formats - such as: .uc, .u, .ut2,
.utx, .uax, .umx, .uz2, .uxx, .usx.
The term package can also apply to a combination of these file types.

Generally when coding for unreal we need only to worry about .uc, .u and .int
files.
We also use the term package to refer to a collection of .uc files that represent
a module or set of additions we have added to the game. The files that make
up this module are part of the package. The compiled .u file is also known as
the package.

Each of these extensions represents a file containing a different type of
Unreal content. .u files contain unrealscript classes, .utx packages contain
textures, .uax packages contain sounds, .ut2 packages contain maps, and so
on.

 1

http://wiki.beyondunreal.com/wiki/Package

Lecture 2 Programming for Artists and Designers

The engine does not actually care about the extensions at all - the engine
sees all packages equally, but it makes life easier for us when coding.
It would be perfectly valid to create a .utx file which contains nothing but
classes (though it *would* be pretty tricky to coax the compiler into doing this).
This is mentioned only for completeness, due it being an advanced topic.

At this point, it is best to think of each extension as representing a container
file which holds a different type of content. Let's now begin to focus on the
type of package we're interested in - a .u package!

Unreal .u files are essentially containers for the class scripts. It's much like a
zip file, in fact, since you can put any type of class, regardless of what it does,
into it. Our raw package, the one that contains the raw .uc files gets
interpreted and the classes added to the .u file.

What Are Classes?
We briefly mentioned classes and Object Oriented Programming (OOP) last
week. These concepts will be covered in more detail next week.

The whole idea behind UnrealScript is a programming concept called Object
Oriented Programming. This means that we're going to create the entire
program using individual little pieces, called objects, which define their own
behaviours and parameters. Those objects interact with each other inside the
realm of the Unreal engine, with scripting to tell them how to interact with each
other. It's important to remember, here, that there is no external influence
telling these objects how to behave (for the most part). They are fully self-
contained objects which control their own behaviour and how they'll react
when another object comes into their sphere of influence. That's an extremely
basic overview of OOP.

A .u package file may contain many classes. A few examples: GameInfo,
Mutator, UTServerAdmin, Inventory. Each of these classes tells the Unreal
Engine about an object in the Unreal universe. In UnrealScript, each class
that we create becomes an object in the Unreal engine. This means that for
every "piece" of a mutator, mod, or whatever, we must write a separate class
file for it. For instance, in the case of writing a new weapon, you must write
one class (class = object) for the weapon, and another class for the ammo
that goes into the weapon. You must write yet another class for the projectiles
that the weapon fires, and yet another class for the shell casing (for example)
that are produced when you fire a weapon. Another class must be written for
the muzzle flash, yet another for the explosion your weapon causes when it
hits something, etc. etc. So, you will write several classes for a simple
weapon, each class describing a different object that the engine must know
about in order for your weapon to be successfully loaded and used in the
game. The number of "pieces", or classes you use is, for the most part,
entirely up to you (although unreal script does force some coding standards),
subject only to the laws of practicality.

 2

Lecture 2 Programming for Artists and Designers

For now, remember that .u files contain classes, which each define a single
object in the Unreal engine. These classes tell the engine all about how that
object interacts with the rest of the objects in the engine, and together, they
create a mutator, mod, or what-have-you.

Components of .U Files
When you write a script, you use text, such as

class Mutator extends Info;

var PlayerPawn P;

function ModifyPlayer(Pawn Other);

defaultproperties
{
}

It would take an extremely long time, however, for the computer to parse
these text statements during the game, so you must first compile the script.
Compiling is the process of converting all of the text you've written into
computer optimized code, commonly referred to as 'binary'. After the
compilation process has completed, you should see a new .u package in your
System directory, with the same name as the directory you created. If you
look at compiled script (a .u package) in a text editor, it will look like gibberish:

 ×£<]$)\²=Pe6
 õJ¯'ÁžP×²!À°
 L¢bBƒ€mcìkÁ€
 mcì[Á€mcìKÁ€
 ½Ë¹'Aümcî;Á¤
 mcî3Á¥mcî3Á¦
 mcî3Á§hcxBƒ€
 mcî3Á¬$×£<]<
 [×£$$)\£%<[=

Although you may be able to pick out certain bits of information, particular
class headers:
// Based on Ammunition
class GetawayAmmo extends Ammunition;

Once the script has been compiled into a package this way, you can no longer
modify the package. In order to make changes, you must delete the compiled
package, make the changes to the original script text, and recompile it.

ClassName/PackageName Notation
Suppose you had written a class called 'MyWeaponClass', and named the
folder for all your script 'MyWeaponMod'. Your compiled package name would

 3

Lecture 2 Programming for Artists and Designers

be 'MyWeaponMod.u'. There are two distinct hierarchies, or "trees", which can
be used to refer to the MyWeaponClass class which now resides inside the
MyWeaponMod.u package.
These two trees are commonly referred to the as the Package Tree, and the
Class Tree. The Unreal engine uses a dotted notation system to access
different branches of these trees, and the notation used for both systems is
exactly the same, so this can be a little confusing at first.

Which tree you should use in order to reference a class depends on the
situation.

The Package Tree looks very much like the directory structure of your Unreal
directory. Within each folder, there are a number of .uc files. Each .uc file
contains the script for one class. Each .u package contains one class for each
.uc file that was in the respective folder. To reference a class using the
package tree, the syntax is:

PackageName.ClassName

Note that the extension is omitted. Why? As I said above, the extensions are
only to help humans keep everything straight - the engine saves and loads all
packages exactly the same.

The Class Tree works quite differently. As you probably know by now, the
Object class is the base class for all of the Unreal classes. If you take a look
at Object.uc, inside the Core\Classes\ folder, you'll see that it is the only class
that does not 'extend' or 'expand' another class. In the class tree, this is
similar to the root directory of the game. All classes which directly subclass
Object would be like the first level of folders in your Unreal installation, with
the classes that subclass those classes being like the second level of
subfolders, and so on. Referencing a class in the class tree is done directly -
no package name is necessary.
In UT2003/4: MutInstaGib is the name of the class that defines the InstaGib
mutator, and this class file is located in the "container” XGame.u package,
which is in the System directory. The .u packages also contains many other
classes which work together to define a number of behaviours for the game.
In some cases, such as Engine.u, the classes contained by the package do
not necessarily relate to each, while in other cases, such as IpDrv.u, all of the
classes contained in the package are focused on a particular area of the
game. To reference a class using the class tree, you do not specify the
package at all:

 class'ClassName'

As mentioned before the term Packages can also refer to the un-interpreted
code. In this is case it refers to the base folder or directory, for instance
XGame.u refers to the interpreted package, and the XGame folder is the un-
interpreted package.

 4

Lecture 2 Programming for Artists and Designers

How Unreal Engine Maps Package Names To Class Names

Here we'll explain a little more in depth the role of the package as opposed to
the role of the class to the Unreal engine.

The way it works is very similar to the way a webserver works. Let's say I'm
hosting a website on my computer - www.scriptnewbie.com. On my computer,
I have designated a particular folder, "C:\WebServer\", as the default directory
that will contain all my webpages, such as home.htm, links.htm, etc...
Let's say I have some pictures I on my website, and these pictures are located
on my hard drive in the

C:\Pictures

directory. However, when I set up my webserver, I set up a "virtual" directory
that points to that C:\Pictures directory. The details of this are unimportant, but
here's my point:
When you access my website, you will do so by typing

http://www.scriptnewbie.com

into your browser. You will then actually be accessing my "C:\WebServer"
directory, but to you, it appears as though you are accessing the root directory
of www.scriptnewbie.com . If you want to access my pictures, you would then
type into your browser http://www.scriptnewbie.com/pics/ to access my
C:\Pictures directory, but again, to you, it appears as though you're accessing
the "pics" subdirectory of the website.
In similar fashion, the packages of the engine are like the actual directories
on my hard drive: C:\WebServer, and C:\Pictures, whereas the classes are
like the virtual folders you type into your browser. You could not type into your
browser:

C:\www.scriptnewbie.com\Pics

and expect to arrive at my website nor would you type:

C:\Website\

on your computer and expect to arrive at that directory on my computer.
My content's physical location is C:\WebServer, but my WebServer software
mediates between you (the user) and the physical location. Same thing goes
for UT2K3. In both cases, content may be in any arbitrary physical location. It
does not matter to the web visitor, because the server software handles the
mapping.

When you are writing the script text, importing textures, referencing sounds,
etc., you will be working with the file hierarchy in detail. It's important to know
which classes reside in which .u files, which textures reside in which .utx file,
which sounds reside in which .uax file, etc. This is like looking at my
webserver from my computer. It's important that I know which actual directory

 5

http://www.scriptnewbie.com/

Lecture 2 Programming for Artists and Designers

my pictures are located in, so that I can place the resources in the correct
place, and configure my webserver to pull the resources from the correct
location when you attempt to access the /pics/ directory.

In Unreal, as the script is being executed, it's unimportant (for the most part**)
which particular .u file a class is in, because we're now working with a
completely different hierarchy. We are now inside the "Engine" of Unreal, and
will be accessing those textures, classes, sounds, etc. from the standpoint of
an object (every aspect of Unreal is an object) inside the engine, much like
the visitor to my website accesses my pictures using the "/pics/" directory.
The actual .u file an object belongs to doesn't really matter inside the game,
because I'm using the Unreal server to access the information I need. The
actual folder that the content resides in on my computer doesn't really matter
to my website visitor, because he is using my webserver to access that
information.

** Protocol and intention is that no two objects can have the same name, such
as Botpack.BlueFlag and MyMod.BlueFlag. However, there is nothing to
prevent you from doing this, as it is syntactically correct. UnrealScript is
designed to be much more pliant than other programming languages with
regards to duplicate files and null references (this is intentional). As a result,
you must be very careful if you choose to give a class the same name as a
class in another package. It will be allowed by the compiler (unless it is in the
same package) but you may get very unreliable results while playing.

 6

	Lecture 2: Introduction to Classes and Packages
	This lecture aims to introduce you to the basics of classes
	This lecture owes its content to: http://wiki.beyondunreal.c
	Classes vs. Packages
	What Are Packages?
	What Are Classes?
	Components of .U Files

	ClassName/PackageName Notation
	How Unreal Engine Maps Package Names To Class Names

